Tobramycin and Dexamethasone Eye drops

Tobramycin Preparations

DEFINITION
Tobramycin Eye Drops are a sterile solution of Tobramycin in a suitable vehicle. The eye drops comply with the requirements stated under Eye Preparations and with the following requirements.

Content of tobramycin, C18H37N5O9
90.0 to 110.0% of the stated amount.

Content of dexamethasone, C22H29FO5
90.0 to 110.0% of the stated amount.

IDENTIFICATION
A. Carry out the method for thin-layer chromatography, Appendix III A, using the following solutions.

1. Dilute a suitable volume of the eye drops with water to produce a solution containing 0.4% w/v of Tobramycin.
2. 0.4% w/v of tobramycin BPCRS in water.
3. 0.4% w/v each of kanamycin monosulfate BPCRS, neomycin sulfate EPCRS and tobramycin BPCRS in water.

CHROMATOGRAPHIC CONDITIONS
(a) Use as the coating silica gel.
(b) Use the mobile phase as described below.
(c) Apply 5 µL of each solution.
(d) Develop the plate to 15 cm.
(e) After removal of the plate, dry it in a current of warm air, spray with a mixture of equal volumes of a 0.2% w/v solution of naphthalene-1,3-diol in ethanol (96%) and a 46% w/v solution of sulfuric acid and heat at 105°C.

MOBILE PHASE
17 volumes of dichloromethane, 33 volumes of 13.5M ammonia and 50 volumes of methanol.

SYSTEM SUITABILITY
The test is not valid unless the chromatogram obtained with solution (3) shows three clearly separated principal spots.

CONFIRMATION
The principal spot in the chromatogram obtained with solution (1) corresponds in position, colour and size to that in the chromatogram obtained with solution (2).

B. In the test for Assay for Tobramycin, the retention time of the principal peak in the chromatogram obtained with solution (1) is similar to that of the peak due to Tobramycin in the chromatogram obtained with solution (2).

C. Mix a quantity of the Eye drops containing 20 mg of Dexamethasone with 5 mL of 0.1m sodium hydroxide, add 50 mL of dichloromethane and mix with the aid of ultrasound for 20 minutes, filter the dichloromethane layer and evaporate to dryness using a rotary evaporator. Dry the residue at 105°C for 2 hours. The infrared absorption spectrum of the dried residue, Appendix II A, is concordant with the reference spectrum of dexamethasone (RS 089).

TESTS

Acidity
pH, 7.9 to 8.2, Appendix V L.

Related substances

for tobramycin

Carry out the method for liquid chromatography, Appendix III D, using the following solutions.

Solution A 1% w/v solution of 1-fluoro-2,4-dinitrobenzene in ethanol (96%)

Solution B Dilute 20 volumes of a 1.5% w/v solution of tris(hydroxymethyl)methylamine to 100 mL with dimethyl sulfoxide.

(1) Dilute a volume of the eye drops with sufficient water to produce a solution containing 0.02% w/v of Tobramycin. Wash with 3 x 20 mL of Dichloromethane, use the aqueous portion.

(2) Dilute 1 volume of solution (1) to 100 volumes with water.

(3) Dilute 1 volume of solution (2) to 10 volumes with water.

(4) Add 1 mL of 0.5M sulfuric acid to 50 mg of tobramycin BPCRS, dissolve in water, add sufficient water to produce 50 mL and mix. Dilute 1 volume of this solution to 5 volumes with water.

(5) Heat a 50-mL portion of solution (4) at 100°C for 8 to 9 hours, allow to cool and dilute to 50 mL with water (generation of impurity B).

(6) water (blank solution).

Derivatise each of the solutions using the following method. The solutions should be heated at the same temperature and for the same time as indicated below.

Transfer 3.75 mL of each of the 6 solutions separately into 15-mL glass tubes. To each solution add 10 mL of solution.
A and 10 ml of solution B. Heat in a water bath at 60° for 50 minutes. Remove the tubes, allow to cool to room temperature, add 3.75 mL of acetonitrile.

CHROMATOGRAPHIC CONDITIONS
(a) Use a stainless steel column (25 cm x 4.6 mm) packed with phenyl silica gel for chromatography (5 µm) (Waters XBridge Phenyl is suitable).
(b) Use gradient elution and the mobile phase described below.
(c) Use a flow rate of 1.2 mL per minute.
(d) Use a column temperature of 25°
(e) Use a detection wavelength of 365 nm.
(f) Inject 45 µL of each solution.

MOBILE PHASE

<table>
<thead>
<tr>
<th>Mobile phase A</th>
<th>Mobile phase B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08 volumes of orthophosphoric acid, 5 volumes of acetonitrile and 95 volumes of water.</td>
<td>0.08 volumes of orthophosphoric acid, 25 volumes of water and 75 volumes of acetonitrile.</td>
</tr>
</tbody>
</table>

When the chromatograms are recorded under the prescribed conditions the retention times relative to tobramycin (retention time about 49 minutes) are: impurity 1, about 0.59; impurity 2, about 0.62; impurity C, about 0.9; impurity B, about 0.96 and impurity A, about 0.96.

The area of the peak due to impurity B obtained in solution (4) is observed to increase in solution (5).

SYSTEM SUITABILITY
The test is not valid unless, in the chromatogram obtained with solution (5), the resolution between the peaks due to impurity A and impurity B is at least 1.0.

LIMITS
Use the chromatograms obtained with solutions (4) and (5) to identify the peaks due to impurities A and B. The peak due to impurity B is observed to increase in solution (5). Identify the peak in the chromatogram obtained with solution (1) corresponding to impurity A and multiply the area of this peak by a correction factor of 2.1. Identify the peaks in the chromatogram obtained with solution (1) corresponding to any named impurity and subtract from the area the response from any corresponding peak in the chromatogram obtained with solution (6). In the chromatogram obtained with solution (1): the area of any secondary peak is not greater than twice the area of the principal peak in the chromatogram obtained with solution (2) (2.0%); the sum of the areas of all the secondary peaks is not greater than 3 times the area of the principal peak in the chromatogram obtained with solution (2) (3.0%).

Disregard any peaks in the chromatogram obtained with solution (6) and any peak with an area less than the area of the principal peak in the chromatogram obtained with solution (3) (0.1%).

for dexamethasone
Carry out the method for liquid chromatography, Appendix III D, using the following solutions in the mobile phase. (1) Disperse a quantity of the eye drops containing 20 mg of Dexamethasone in 70 mL of mobile phase, mix with the aid of ultrasound for 10 minutes, dilute with sufficient mobile phase to produce 100 mL and filter. (2) Dilute 3 volume of solution (1) to 100 volumes with the mobile phase. (3) 0.02% w/v of dexamethasone impurity standard BPCRS. (4) Dilute 1 volume of solution (1) to 100 volumes with the mobile phase, dilute 1 mL of this solution to 10 volumes with mobile phase.

CHROMATOGRAPHIC CONDITIONS
(a) Use a stainless steel column (15 cm x 3.9 mm) packed with octadecylsilica gel for chromatography R (5 µm) (Waters Symmetry C18 is suitable).
(b) Use isocratic elution and the mobile phase described below.
(c) Use a flow rate of 1.5 mL per minute.
(d) Use an ambient column temperature.
(e) Use a detection wavelength of 254 nm.
(f) Inject 50 µL of each solution.
(g) For solution (1) allow the chromatography to proceed for six times the retention time of dexamethasone.

MOBILE PHASE
27 volumes of acetonitrile and 73 volumes of a 0.3% w/v solution of orthophosphoric acid that has been previously adjusted to pH 3.0 with dilute sodium hydroxide.

SYSTEM SUITABILITY
The test is not valid unless, the chromatogram obtained with solution (3): the resolution factor between the peaks due to impurity 3 and dexamethasone is at least 1.5; closely resembles the chromatogram supplied with dexamethasone impurity standard BPCRS.

LIMITS
In the chromatogram obtained with solution (1): the sum of the areas of any peaks, apart from the principal peak, is not greater than the area of the peak in the chromatogram obtained with solution (2) (3%).

Disregard any peak with an area less than the area of the peak in the chromatogram obtained with solution (4) (0.1%).
ASSAY for tobramycin

Carry out the method for liquid chromatography, Appendix III D, using the following solutions.

Solution A 1% w/v solution of 1-fluoro-2,4-dinitrobenzene in ethanol (96%)

Solution B Dilute 20 volumes of a 1.5% w/v solution of tris(hydroxymethyl)methylamine to 100 mL with dimethyl sulfoxide.

(1) Dilute a volume of the eye drops, if necessary, with sufficient water to produce a solution containing 0.02% w/v of Tobramycin.

(2) Add 1 mL of 0.5 M sulfuric acid to 50 mg of tobramycin BPCRS, dissolve in water, add sufficient water to produce 50 mL and mix. Dilute 1 volume of this solution to 5 volumes with water.

(3) Dilute 1 volume of a 0.024% w/v solution of 1-naphtholbenzein in acetonitrile to 5 volumes with derivatised solution (2).

Derivatisate solutions (1) and (2) using the following method. The solutions should be heated at the same temperature and for the same time as indicated below. Derivatisate solutions (1) and (2) using the following method. Transfer 4 mL of each solution separately into 50-mL volumetric flasks. To each solution add 10 mL of solution A and 10 ml of solution B and mixing. Heat in a water bath at 60° for 50 minutes. Remove the flasks, allow to stand for 10 minutes and add acetonitrile to about 2 mL below the meniscus. Allow to cool to room temperature and add sufficient acetonitrile to produce 50 mL.

CHROMATOGRAPHIC CONDITIONS

(a) Use a stainless steel column (25 cm × 4.6 mm) packed with octadecylsilica gel for chromatography (5 µm) (Symmetry C18 is suitable).

(b) Use isocratic elution and the mobile phase described below.

(c) Use a flow rate of 1.2 mL per minute.

(d) Use an ambient column temperature.

(e) Use a detection wavelength of 365 nm.

(f) Inject 20 µL of each solution.

MOBILE PHASE

Dissolve 2.0 g of tris(hydroxymethyl)methylamine in 800 mL of water, add 20 mL of 0.5 M sulfuric acid and sufficient acetonitrile to produce 2000 mL.

SYSTEM SUITABILITY

The Assay is not valid unless, in the chromatogram obtained with solution (3), the resolution between the peaks due to 1-naphtholbenzein and tobramycin is at least 4.0.

DETERMINATION OF CONTENT

Calculate the content of C_{18}H_{37}N_{5}O_{9} in the injection using the declared content of C_{18}H_{37}N_{5}O_{9} in tobramycin BPCRS.

for dexamethasone

Carry out the method for liquid chromatography, Appendix III D, using the following solutions in the mobile phase.

(1) Disperse a quantity of the eye drops containing 20 mg of Dexamethasone in 70 mL of mobile phase, mix with the aid of ultrasound for 10 minutes, dilute with sufficient mobile phase to produce 100 mL and filter.

(2) 0.02% w/v of dexamethasone BPCRS.

(3) 0.01% w/v of dexamethasone impurity standard BPCRS.

CHROMATOGRAPHIC CONDITIONS

The chromatographic conditions described under Related substances may be used.

SYSTEM SUITABILITY

The test is not valid unless the chromatogram obtained with solution (3):

the resolution factor between the peaks due to impurity 3 and dexamethasone is at least 1.5;

closely resembles the chromatogram supplied with dexamethasone impurity standard BPCRS.

DETERMINATION OF CONTENT

Calculate the content of C_{22}H_{29}FO_{5} in the eye drops using the declared content of C_{22}H_{29}FO_{5} in dexamethasone BPCRS.

IMPURITIES

The impurities limited by the requirements of this monograph include those listed under Tobramycin, Dexamethasone and the following:

for tobramycin

1. Apramycin,

2. Deoxystreptamine kanosamide.

for dexamethasone

1. Dexamethasone-17β-carboxylic acid.

2. Dexamethasone-17α-dehydroxy-17β-carboxylic acid.

3. Dexamethasone-21-aldehyde.
6. Dexamethasone-17-ketone.
7. Dexamethasone-17(20)-enol-21-aldehyde.