British Approved Names 2012

Supplement No. 2

Published on the recommendation of the British Pharmacopoeia Commission

Effective date: 1 January 2014

London: The Stationery Office
Membership of the British Pharmacopoeia Commission

Chairman
Vacant, following the retirement of Professor David Woolfson on 30 June 2012

Vice-Chairman
Mr V’lain Fenton-May BPharm MIPharmM FRPharmS
Former Specialist Quality Controller to the Welsh Hospitals

Professor Donald Cairns BSc PhD MRPharmS CSci CChem FRSC
Head, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen

Mr Barry Capon CBE MA DL (Lay representative)
Non-executive Director, Norfolk and Suffolk NHS Foundation Trust

Dr Graham D Cook BPharm PhD MRPharmS
Senior Director, Process Knowledge/Quality by Design, Pfizer

Mr Andrew Coulson BVetMed MSc MRCVS
Member of the Royal College of Veterinary Surgeons; former Superintending Inspector, Science and Research Group, The Home Office

Professor Alastair Davidson BSc PhD FRPharmS
Visiting Professor of Pharmaceutical Sciences, University of Strathclyde

Dr Thomas D Duffy¹ BSc PhD FRPharmS CChem MRSC FCQI CQP MRQA
Director, Lowden International (providing consultancy and training to pharmaceutical organisations)

Mr Christopher Goddard BSc DIS CSci EurChem CChem FRSC
Quality Control Technical Manager, Recipharm Limited

Dr Keith Helliwell BPharm PhD
Senior Technical Adviser, William Ransom & Son PLC

Dr Rodney L Horder BPharm PhD MRPharmS
Former Divisional Vice President, European Quality and Regulatory Strategy, Abbott

Dr Gerard Lee BPharm PhD FRPharmS MRSC CChem
Former Group Manager of the British Pharmacopoeia and Laboratory Services Section, MHRA; former Secretary and Scientific Director, British Pharmacopoeia Commission
Dr Brian R Matthews BPharm PhD FRPharmS FTOPRA MRI
Consultant on pharmaceutical and medical device regulatory affairs; Former Senior Director, EC Registration, Alcon Laboratories

Professor John Miller MSc PhD MRSC CChem
Visiting Professor, Strathclyde Institute of Pharmacy and Biomedical Sciences; former Head of the EDQM Laboratory

Dr Ronald Torano BSc PhD MRSC CChem
Pharmacopoeial Intelligence and Advisory Specialist, GlaxoSmithKline

Dr Lincoln Tsang BPharm LLB PhD FRSC FIBiol FRSA FRPharmS Solicitor
Life Sciences Lawyer, Partner, Arnold Porter LLP

Mrs Josephine Turnbull LLB (Lay representative)
Chair of Tees, Esk and Wear Valley NHS Foundation Trust

Dr Paul Varley BSc PhD
Vice President of Biopharmaceutical Development, Medimmune Limited

Professor Elizabeth Williamson BPharm PhD MRPharmS
Professor of Pharmacy, University of Reading

Secretary and Scientific Director
Dr Samantha Atkinson BSc MSc PhD MRSC Visiting Fellow, Reading University

1Retired, 31 December 2012
Membership of the British Pharmacopoeia Expert Advisory Group on Nomenclature

Chairman
Dr J K Aronson

Vice-Chairman
Dr L Tsang

Dr M Ahmed, Mrs S Clarke, Mr D Mehta, Dr G P Moss, Dr R Thorpe

Corresponding members
Dr R G Balocco-Mattavelli, Dr A D McNaught, Mrs E M Cortés-Montejano, Dr J S Robertson

British Pharmacopoeia Commission Expert Advisory Group on Nomenclature
Secretariat
Dr P Holland, Mr A Evans, Ms H Corns

Current members of staff of the Commission who have taken part in the production of this Supplement include:

Secretariat
Mrs M Vallender (Editor-in-Chief)
Mr S Young (Head of Analytical Science)
Mrs M Barrett, Ms J Francomb, Mr A Gibb, Dr R A Pask-Hughes, Mr J Pound, Dr F J Swanson, Mr M Whaley

Administrative
Mrs M Cumberbatch, Mr B F Delahunty, Mr W Jeffries, Mrs D Myburgh, Miss J Paine
General Notices

British Approved Names

British Approved Names are devised or selected by the British Pharmacopoeia Commission. The British Pharmacopoeia Commission has caused this British Approved Names 2012 to be prepared under Regulation 318(1) of the Human Medicines Regulations 2012 and, in accordance with Regulation 318(2), the Ministers have arranged for it to be published. British Approved Names are short, distinctive names, selected in accordance with the Guiding Principles shown on page x, for substances where the systematic chemical or other scientific names are too complex for convenient general use.

If any substance or article, to which regulation 317(1) of the Human Medicines Regulations 2012 applies, becomes the subject of a monograph in the British Pharmacopoeia, or other compendium prepared under that regulation, the British Approved Name (BAN) of that substance should be suitable for placing at the head of the monograph. The issue of a British Approved Name does not imply that the substance or article will necessarily be included in the British Pharmacopoeia or other compendium or that the British Pharmacopoeia Commission is prepared to recommend the use of the substance or article in medicine.

Recommended International Nonproprietary Names

Where indicated, each name defined in this edition is the English language form of a recommended International Nonproprietary Name (rINN). In cases where no rINN exists, ‘(BAN)’ has been added to follow the name in question.

British Approved Names (Modified)

British Approved Names (Modified), developed as described below, have the same status under the Human Medicines Regulations 2012 as the British Approved Names from which they are derived.

Salts

When a British Approved Name exists for an acid or base, the name of the corresponding salt should be formed by following normal chemical practice whenever possible; the resulting name is known as a British Approved Name (Modified) (BANM).

When naming the salt of an acid, the British Approved Name of which ends in -ic acid, the name of the anion is formed by changing -ic acid to -ate; the name is preceded by that of the cation, eg valproic acid giving sodium valproate. When naming the salts of other acids, the name of the anion is identical to that of the acid and is followed by the name of the cation, eg ampicillin giving ampicillin sodium.

For the salts of bases, the British Approved Name of the base is followed by the conventional anion name, eg acebutolol giving acebutolol hydrochloride. The British Approved Name of a quaternary salt includes the anion and may be modified by substitution of a different anion.

Esters

Modification of names following normal chemical practice has traditionally been employed to provide names for esters of steroid alcohols, eg betamethasone valerate. In other esters, the names adopted will depend upon whether the biological activity lies in the acid or alcohol or within the ester itself and on whether a British Approved Name exists for the acid or alcohol in question. For further recommendations on the formation of British Approved Names (Modified), see Guiding Principles B2 and B3.
Pronunciation
Each British Approved Name, except for abandoned or discontinued substances, is provided with an indication of its pronunciation given in phonetic terms defined in the Key to Pronunciation shown on page xiii.

Nonproprietary Names of Medicinal Products
A nonproprietary name for a medicinal product combines the British Approved Name of the substance with an appropriate term drawn from the relevant general monograph of the British Pharmacopoeia and, in the majority of cases, are the Standard Terms as published by the Council of Europe (see British Pharmacopoeia 2014, Supplementary Chapter II B).

Where the substance name is a British Approved Name (Modified), the modifying term is omitted from the nonproprietary name of the product unless two or more formulations containing different forms of the basic substance exist. In such cases the modifying term is retained. Tablets of trihexyphenidyl hydrochloride, for example, are known simply as trihexyphenidyl tablets, since tablets containing trihexyphenidyl are formulated only with its hydrochloride salt. Promethazine, however, is formulated as tablets containing either the hydrochloride or the teoclate salts and the nonproprietary names of the two tablet forms are promethazine hydrochloride tablets and promethazine teoclate tablets respectively.

Chemical Nomenclature
Each British Approved Name entry includes (1) a systematic chemical name in accordance with the rules of the International Union of Pure and Applied Chemistry (IUPAC) or (2) a brief statement of its biological, biotechnological or botanical source. However, certain concessions to long-established nomenclature terminology in pharmaceutical chemistry are made, details of which are in Appendix A of the main edition of the BAN 2012.

The structures of a large proportion of the substances defined contain one or more chiral centres. The British Approved Name applies only to the specific isomer or racemate indicated by the systematic chemical name, eg laropiprant refers only to the (R)-isomer of 4-[(4-chlorophenyl)methyl]-7-fluoro-5-(methanesulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl}acetic acid.

Structural Formulae and Stereochemistry
Many of the substances exist as a mixture of two enantiomeric forms or as a mixture of four or more stereoisomers. In drawing the structures of single chiral centre molecules, a convention has been adopted whereby the ‘R’ isomer has been drawn and the words and enantiomer added. When a molecule contains two or more chiral centres, each centre has been identified by an asterisk (*) and the words, for example, mixture of 4 stereoisomers added beneath. In some cases a polychiral substance may exist as a pair of stereoisomers, in which case the site of epimerisation is marked with an asterisk (*) and the words and epimer at C* added beneath.
To promote clarity in the structural formulae the following abbreviations are frequently used:

- **Me**: –CH$_3$
- **Bu**: –CH(CH$_3$)$_2$
- **Et**: –CH$_2$CH$_3$
- **Bu$_t$**: –C(CH$_3$)$_3$
- **Pr$_i$**: –CH(CH$_3$)$_2$
- **Bu$_n$**: –CH$_2$CH$_2$CH$_3$
- **Pr$_n$**: –CH$_2$CH$_2$CH$_3$
- **Ph**: –C$_6$H$_5$
- **Ac**: –COCH$_3$

The 1-letter and 3-letter codes for amino acids that constitute peptide and polypeptide chains are defined in Appendix A of the main edition of the BAN 2012, section F1.

Appendix A: Structures gives the basic skeletal structures of some important groups of substances of natural origin, such as steroids, cephalosporins, penicillins, prostaglandins and opioids, showing the numbering system and the normal stereochemistry of each group. It provides the systematic chemical names of certain key substances, such as penicillanic acid and prostanoic acid, which have been used as convenient and familiar bases of chemical definitions.

Chemical Abstracts Service Registry Numbers

Chemical Abstracts Service (CAS) Registry Numbers corresponding to almost every British Approved Name are included in order to provide easy access to scientific literature on any particular substance through computer databases. They are printed in *italic type*.

Code Designations

Laboratory codes are often used to identify substances during the period of investigation and may appear in the scientific literature. Such codes, when known, are included to facilitate relating a substance described by a code to a British Approved Name subsequently assigned to it.

Synonyms

Proposed International Nonproprietary Names and United States Adopted Names that differ significantly from the corresponding British Approved Name are included and are followed by ‘(pINN)’ or ‘(USAN)’, as appropriate. Additionally, other nonproprietary names by which a substance has previously been known may be given.

Discontinued Substances and Products

British Approved Names for substances that have either been abandoned during development or are no longer commercially available in the UK are listed in Appendix C of the main edition of the BAN 2012.

Action and Use

The statements in italics indicating the action and/or use are largely based on information supplied by the manufacturer and are expressed, wherever possible, in terms of the therapeutic classification used in the British National Formulary. The British Pharmacopoeia Commission is not in a position to comment on the efficacy of the substance for the action claimed.
Guiding Principles

When a recommended International Nonproprietary Name is published, it will be adopted as the BAN. When no INN exists the guiding principles given below should be used in devising or selecting new BANs.

A1 Names should be distinctive in sound and spelling. They should not be inconveniently long and should not be liable to confusion with names in common use. They should be free from conflict with trade marks and from misleading connotations.

A2 The name for a substance belonging to a group of therapeutically or pharmacologically related substances should, when appropriate, show this relationship. Names that are likely to cause alarm or expectations in patients through an anatomical, physiological, pathological or therapeutic suggestion should be avoided.

These primary principles are implemented by using the following secondary principles:

B1 In devising the name of the first substance in a new pharmacological group, consideration should first be given to the opportunity for devising further suitable names for related substances belonging to the new group by means of a common stem (see Guiding Principle B7).

B2 In devising names for therapeutically active acids, one-word names are preferred; their salts should be named without modifying the acid name, eg fenoprofen and fenoprofen calcium, naproxen and naproxen sodium.

B3 Names for substances that are used as salts should in general apply to the active base or the active acid. Names for different salts of the same active substance should differ only in respect of the name of the inactive counter-ion. For quaternary ammonium substances, the cation and anion should be named as separate components.

B4 The use of an isolated letter or number should be avoided; hyphenated construction is also undesirable, except where the prefix co- has previously been used in British Approved Names for combinations of substances (eg co-trimoxazole).

B5 To facilitate the acceptance and pronunciation of British Approved Names in other countries, f should normally be used instead of ph, t instead of th, i instead of y; names beginning with h and k should be avoided.

B6 Provided that the names suggested are in accordance with these principles, names proposed by the company discovering or first developing and marketing a pharmaceutical preparation should receive preferential consideration.

B7 Group relationships in British Approved Names (see Guiding Principle A2) should, if possible, be shown by using a common stem. The stem should only be used for substances of the appropriate group. The following list contains examples of stems for groups of substances. Where a stem is shown without any hyphens it may be used anywhere in the name.
A full list of common stems is contained in Document

WHO/EMP/QSM/2011.3 and addenda available from the the World Health Organization.

Examples:

- **-adol** analgesics
- **-antrone** antineoplastics; anthraquinone derivatives
- **-ast** antiasthmatics, antiallergics when not acting primarily as antihistamines
- **-astine** antihistamines, not otherwise classifiable
- **-azocine** narcotic antagonists/agonists related to 6,7-benzomorphan
- **-buzone** anti-inflammatory analgesics, phenylbutazone derivatives
- **-cain-** anti-arrhythmic agents with local anaesthetic activity
- **-caine** local anaesthetics
- **-cef-** antibiotics, derivatives of cephalosporanic acid
- **-cillin** antibiotics, derivatives of 6-aminopenicillanic acid
- **-conazole** systemic antifungals of the miconazole group
- **-dipine** calcium channel blockers, nifedipine derivatives
- **-fylline N** methylated xanthine derivatives
- **-floxacin** fluorine-containing antibacterial agents of the quinolone group
- **-gest** steroids, progestogens
- **-gli-** sulfonylurea hypoglycaemics
- **-grel** platelet aggregation inhibitors
- **-io-** iodine-containing contrast media
- **-kalim** potassium channel openers
- **-mab** monoclonal antibodies:
 - **-amab** rat origin
 - **-emab** hamster origin
 - **-imab** primate origin
 - **-omab** mouse origin
 - **-umab** human origin
 - **-ximab** chimerical origin
 - **-zumab** humanized
 - **-xizumab** chimeric-humanized

substem for target class

- **-b(a)-** bacterial
- **-c(i)-** cardiovascular
- **-f(u)-** fungal
- **-k(i)-** interleukin
- **-l(i)-** immunomodulating
- **-n(e)-** neural
- **-s(o)-** bone
- **-tox(a)-** toxin
- **t(u)-** tumour
- **-v(i)-** viral
-metacin anti-inflammatory substances of the indometacin group
-mustine antineoplastic, alkylating agents, (β-chloroethyl)amine derivative
-nercept tumour necrosis factor antagonists
-nidazole antiprotozoal substances of the metronidazole group
-olol beta adrenoceptor antagonists
-oxacin antibacterial agents of the quinolone group
-pafant platelet-activating factor antagonists
-poetin erythropoietin analogues
-pramine substances of the imipramine group
-pride substances of the sulpiride group
-pril inhibitors of angiotensin-converting enzyme
-prilat inhibitors of angiotensin-converting enzyme
-profen anti-inflammatory substances of the ibuprofen group
-prost prostaglandins
-racetam substances of the piracetam group
-relin hypophyseal hormone release-stimulating peptides
-rsen antisense oligonucleotide
-sartan angiotensin II receptor antagonists, antihypertensive (non-petidic)
-setron serotonin (5HT3) receptor antagonists
-stat enzyme inhibitors
-steine substances of the acetylcysteine group
-tidine histamine H2 receptor antagonists of the cimetidine group
-triptan serotonin (5HT1D) receptor agonists
-vaptan vasopressin receptor antagonists
-verine spasmylytics with a papaverine-like action
-vastatin HMG CoA reductase inhibitors
-vir antivirals
-zotan serotonin (5HT1A) receptor agonists

* Products containing an immunoglobulin variable domain which binds to a defined target are named using the suffix -mab. In addition, both the name of the species on which the immunoglobulin sequence of the mAb is based and the target class are indicated in the name (for example, onartuzumab, onar-tu-zumab). For a fuller explanation see INN Working Document 05.179, Update 2012.
Key to Pronunciation

1. Consonants are given their usual values with the following restrictions:

 g as in good
 h as in hard except in the following combinations:
 ch as in child
 th as in thick
 j as in job

2. Vowels are given their usual short values with the exception of the following:

 ä as in tame ó as in no
 á as in malt ôl as in hole
 ar as in far oo as in moon
 ë as in seen or as in more
 er as in herd ú as in full
 eer as in beer û as in cute
 ï as in site ûr as in pure
 ír as in fire

3. Stressed syllables are in italics.

Symbols and Abbreviations

- Subject of a monograph in the British or European Pharmacopoeias
- ♣ Subject of a monograph in the British Pharmacopoeia (Veterinary)
BAN British Approved Name
BANM British Approved Name (Modified)
BSI British Standards Institution Common Name
ISO International Standards Organization Common Name
pINN Proposed International Nonproprietary Name
rINN Recommended International Nonproprietary Name
INNM International Nonproprietary Name (Modified)
USAN United States Adopted Name
Guide to Using the BAN 2012

Amikacin (rINN) a·mi·kä·sin

6-O-(3-Amino-3-deoxy-α-D-glucopyranosyl)-4-O-(6-amino-6-deoxy-α-D-glucopyranosyl)-N1-[(2S)-4-amino-2-hydroxybutyryl]-2-deoxy-D-streptamine; C22H43N5O13; 37517-28-5

Amikacin Sulfate 39831-55-5

Aminoglycoside antibacterial

Adrenaline/Epinephrine (BAN/rINN) a·dre·na·lēn/e·pi·ne·frēn

(R)-1-(3,4-Dihydroxyphenyl)-2-methylaminoethanol; C9H13NO3; 51-43-4

Adrenaline Acid Tartrate/Epinephrine Acid Tartrate

epinephrine bitartrate (USAN); 51-42-3

Adrenoceptor agonist
Apomorphine (BAN) ä·pö·mor·fën
6αβ-Apomorphine-10,11-diol; C17H17NO2; 58-00-4
• Apomorphine Hydrochloride
 314-19-2 (anhidrous); 41372-20-7 (hemihydrate)
 Dopamine receptor agonist; treatment of Parkinson's disease

Alfaxalone (rINN) al·fax·a·lön
3α-Hydroxy-5α-pregnane-11,20-dione; C21H32O3; 23930-19-0
Intravenous general anaesthetic (veterinary)

Alletorphine see Appendix C

Alphaxalone see Alfaxolone

(BAN) indicates that the name is a British Approved Name (not a rINN)
Guide to Pronunciation
Chemical Abstracts Service Registry Number
Indicates that the substance is used in veterinary medicine
Cross reference to Appendix C: indicating the substance is no longer actively marketed
Cross reference to the current BAN: where the former BAN has been harmonised with the rINN
Axitinib (rINN) aks·i·tin·ib
N-Methyl-2-[(3-[(1E)-2-(pyridin-2-yl)ethenyl]-1H-indazol-6-yl)sulfanyl]benzamide; C_{22}H_{18}N_{4}OS; 319460-85-0
Tyrosine kinase inhibitor (VEGF receptors); treatment of renal cell cancer

Azilsartan (rINN) az·il·sar·tan
2-Ethoxy-1-[(2'-(5-oxo-1,3-dioxol-4-yl)methyl)-1H-benzimidazole-7-carboxylate; C_{30}H_{24}N_{4}O_{8}; 863031-21-4
Angiotensin II (AT_{1}) receptor antagonist

Azilsartan Medoxomil (rINN)
(5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 2-ethoxy-1-[(2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1',1'-biphenyl-4-yl)methyl]-1H-benzimidazole-7-carboxylate; C_{38}H_{28}N_{4}O_{8}; 863031-21-4
Angiotensin II (AT_{1}) receptor antagonist

Brentuximab Vedotin (rINN) bren·tux·i·mab
Immunoglobulin G1-kappa auristatin E conjugate, anti-[Homo sapiens TNFRSF8 (tumour necrosis factor receptor superfamily member 8, KI-1, CD30)], chimeric monoclonal antibody conjugated to auristatin E; gamma1 heavy chain (1-446) [Mus musculus VH (IGHV1-84*02 -(IGHD)-IGHJ3*01) [8.8.10] (1-117)-Homo sapiens IGHG1*01 CH3 K130>del (118-446)], (220-218')-disulfide (if not conjugated) with kappa light chain (1'-218') [Mus musculus V-KAPPA (IGKV3-4*01 -IGKJ1*01) [10.3.9] (1'-111')-Homo sapiens IGKC*01 (112'-218')]; (226-226'')-disulfide dimer; conjugated, on an average of 3 to 5 cysteinyl, to monomethylauristatin E (MMAE), via a maleimide-decaproyl-valyl-citrullinyl-p-aminobenzylcarbamate (mc-valit-PABC) linker; 914088-09-8
Monoclonal antibody (CD30 specific); microtubule disrupting agent; relapsed or refractory CD30+ Hodgkin’s lymphoma

The symbol ‘¬’ in systematic chemical names signifies line continuation
Catridecacog (rINN) ka-tri-de-ka-kog
Blood-coagulation factor XIII [A2] (human homodimer allele F13A*1B), recombinant DNA origin; 606138-08-3
Recombinant factor XIII A subunit, dimer

Catridecacog has the following amino acid sequence:

SETSRTPAFG	RRAVPFNNSN	AAEDDLPTVE
LQGVFVRGVM	LQEFINVTSS	HLFLKERWDTN
KVDHTDKYFE	NNLKIVRGGQ	SKFYQIDFSR
PYDPRLDFRP	VEYVIGYQP	EKNGTYIYPV
IVSELQSGKW	GAKIVMRRED	SVRSLIQSSP
KCIVGEFRMY	VAWTPYFGL	RTSRNPEETD
YLIFNPWED	DAVYLDNEKE	REEYVLNDIG
VIFYGEVDNI	KTRSWSYQGF	EDGIILDCLY
VMDRQMDLSS	GRGNPIKVR	VGSAMVNAKD

DEGVWGSVGD NIIAYGVPFPS AWGTSVDDL
EYRSSENVR YGQCIWFAQG VNTFLRCLGI
PARIVTNYS AHDNDANQM DIFLEDGVN
NSKLTKDSVW NYHCWNEAQM TRPLPVGEG
GWQAVIDSPQ ENSDOMYRCQ FASVQAQH
HVCFOQAPF VFAEVSNDL YITAKKQTH
VVENVGFLV YGLVTKIQG GDGMIDTTT
YFKFQGQEEE RLALETALMY GAKPKINTEG
VMKRSNWDM DFEVENAVLG KDFKLSITFR
NNSHNYRTIT AYLSANITYF TQVPKAEFKK
ETFDTLEPL SFKKKAVLQ AGHEYGMQLE
QASLFFFVTA RINEROTIVA KQKSTVLTP
EIIIKVGRTQ VVGSDMTTVT EFTNPLKETL
RNIVWHDGP GVTRPQKKMF BERPNSVTQ
WEEVICFWEWS GHRKLIASMS SDSLHIVGE
LDVQIQRRPS M

S = N-acetylSer

Ciclesonide (rINN) si-kle-so-nîd
(2'R)-2'-Cyclohexyl-11-[β-hydroxy-3,20-dioxo-16βH-[1,3]dioxolo[4',5':16,17]pregna-1,4-dien-20-yl] 2-methylpropanoate; C32H44O7; 126544-47-6
Glucocorticoid

Clevidipine (rINN) kle-vî-di-pën
Butanoyloxymethyl methyl rac-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate; C21H23Cl2NO6; 167221-71-8
Calcium channel blocker

Crizotinib (rINN) kri-zot-in-ib
3-[(1R)-1-(2,6-Dichloro-3-fluorophenyl)ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyridin-2-amine; C21H22Cl2FN5O; 877399-52-5
Tyrosine kinase inhibitor; anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer

Dapoxetine (rINN) da-poks-e-tên
(1S)-N,N-Dimethyl-3-[(naphthalen-2-yl)oxy]-1-phenylpropan-1-amine; C21H23NO; 119356-77-3
Dapoxetine Hydrochloride 129938-20-1
Selective serotonin reuptake inhibitor; treatment of premature ejaculation

The symbol ‘¬’ in systematic chemical names signifies line continuation
Emtricitabine (rINN) em-tri-së-ta-bén
5-Fluoro-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine; C_{10}H_{10}FN_{3}O_{3}S; 143491-57-0
Nucleoside reverse transcriptase inhibitor; antiviral (HIV)

Ferumoxytol (BAN) fe-roo-moks-i·tol
Polyglucose sorbitol carboxymethyl ether-coated non-stoichiometric magnetite corresponding approximately to the formula:
FeO_{1.49}; coating C_{398}H_{646}O_{337}; 72249-2-6
Treatment of iron-deficiency anaemia

Fidaxomicin (rINN) fid·aks·o·mi·sin
(3E,5E,8S,9E,11S,12R,13E,15E,18S)-3-[(6-Deoxy-4-O-(3,5-dichloro-2-ethyl-4,6-dihydroxybenzoyl)-2-O-methyl-β-D-mannopyranosyl)oxy]methyl]-12-[(6-deoxy-5-C-methyl-4-O-(2-methylpropanoyl)β-D-hexo-pyranosyl)oxy]-11-ethyl-8-hydroxy-18-[(1R)-1-hydroxyethyl]-9,13,15-trimethylxacyclooctadeca-3,5,9,13,15-penta-2-one; C_{52}H_{74}Cl_{2}O_{18}; 873857-62-6
Macrocyclic antibacterial; treatment of antibiotic-associated diarrhoea due to Clostridium difficile

Ivacaftor (rINN) ï·vá·caf·tor
N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-di-hydroquinoline-3-carboxamide; C_{24}H_{23}N_{3}O_{3}; 873054-44-5
CFTR (cystic fibrosis transmembrane conductance regulator) channel activator; treatment of cystic fibrosis

Lubiprostone (rINN) loo·bi·pros·tön
(-)-7-[(2R,4aR,SR,7aR)-2-(1,1-Difluoropentyl)-2-hydroxy-6-oxoctahydrocyclopenta[b][1,4]benzoxepin-5-yl]heptanoic acid; C_{20}H_{32}F_{2}O_{5}; 333963-40-9
Activator of CIC-2 chloride channels; management of chronic idiopathic constipation

Mertiatide (rINN) mer·ti·a·tid
N-[(N-[(Sulfanylacetyl)glycyl]glycyl]glycine; mercaptoacetyltriglycine; C_{12}H_{23}N_{3}O_{5}; 66516-09-4
Radiocontrast medium

Pasireotide (rINN) pa·si·rë·tïd
Cyclo[(4R)-4-(2-aminoethylcarbamoyloxy)-L-prolyl-L-phenylglycyl-D-tryptophyl-L-lysyl-4-O-benzyl-L-tyrosyl-L-phenylalanyl-]; C_{58}H_{66}N_{10}O_{9}; 396091-73-9
Pasireotide Acetate 396091-76-2
Pasireotide Aspartate 396091-77-3
Somatostatin analogue; treatment of Cushing’s disease

Perampanel (rINN) pe·ram·pa·nel
2-(6'-Oxo-1'-phenyl-1',6'-dihydro[2,3'-bipyridin]-5'·yl)benzomitrile; C_{33}H_{13}N_{2}O_{6}; 380917-97-5
AMPA glutamate receptor antagonist at post-synaptic neurons; antiepileptic

The symbol ‘¬’ in systematic chemical names signifies line continuation
Rilpivirine (rINN) ril·pi·vi·rën
4-[[4-(4-[(1E)-2-Cyanophenyl]-2,6-dimethylphenyl]amino)pyrimidin-2-yl]amino]benzonitrile; C_{22}H_{18}N_{6}; 500287-72-9
Rilpivirine Hydrochloride 700361-47-3
Non-nucleoside reverse transcriptase inhibitor; antiviral (HIV)

Rupatadine (rINN) roo·pa·ta·dên
8-Chloro-11-{1-[((5-methylpyridin-3-yl)methyl)piperidin-4-ylidene]-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine; C_{26}H_{26}ClN_{3}; 158876-82-5
Rupatadine Fumarate 182349-12-8
Histamine H_{1} receptor and platelet activating factor antagonist; antihistamine

Ruxolitinib (rINN) ruks·ö·li·tin·ib
(3R)-3-Cyclopentyl-4-(4-(1H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile; C_{17}H_{18}N_{6}; 941678-49-5
Ruxolitinib Phosphate 1092939-17-7
Tyrosine kinase inhibitor; treatment of myelofibrosis

Tafamidis (rINN) ta·fam·i·dis
2-(3,5-Dichlorophenyl)-1,3-benzoxazole-6-carboxylic acid; C_{14}H_{13}Cl_{2}NO_{3}; 594839-88-0
Tafamidis Meglumine 951395-08-7
Transthyretin stabiliser; inhibitor of amyloid formation; treatment of transthyretin amyloidosis

Tapentadol (rINN) ta·pen·ta·dol
3-[(2R,3R)-1-(Dimethylamino)-2-methylpentan-3-yl]phenol; C_{14}H_{25}NO; 175591-23-8
Tapentadol Hydrochloride 175591-09-0
µ-Opioid receptor (OP_{2}, MOR) agonist and noradrenaline reuptake inhibitor; analgesic

Technetium[99mTc] Mertiatide (BAN) tek·në·së·um mer·tï·a·tïd
Disodium (N-[N-[N-(sulfanylacyl-κS)glycyl-κN]glycyl-κN]glycine-κN)oxido[99mTc]technetate(2–); C_{19}H_{6}N_{2}O_{8}STc; 125224-05-7 (anion)
Imaging agent

Trifluridine (rINN) tri·flü·ri·din
1-[(2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione; C_{10}H_{11}F_{3}N_{2}O_{5}; 70-00-8
Pyrimidine nucleoside analogue; antiviral (herpes viruses)

Vemurafenib (rINN) vem·yu·ra·fe·nib
N-[3-[5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-carbonyl]-2,4-difluorophenyl]propane-1-sulfonamide; C_{23}H_{18}ClF_{2}N_{3}O_{3}S; 918504-65-1
BRAF kinase inhibitor; treatment of unresectable or metastatic melanoma with BRAF V600 mutations

The symbol ‘¬’ in systematic chemical names signifies line continuation
Amendments - British Approved Names 2012

Amiodarone (rINN) a·mi·ô·da·rön
(2-Butyl-1-benzofuran-3-yl)[4-[2-(diethylamino)ethoxy]-3,5-diodophenyl]methanone; C_{25}H_{29}I_{2}NO_{3}; 1951-25-3
• Amiodarone Hydrochloride 19774-82-4
Potassium channel blocker; class III antiarrhythmic

Diflunisal (rINN) di·floo·ni·sal
2',4'-Difluoro-4-hydroxy[1,1'-biphenyl]-3-carboxylic acid; C_{13}H_{8}F_{2}O_{3}; 22494-42-4
Salicylate; non-selective cyclo-oxygenase inhibitor; antipyretic; analgesic; anti-inflammatory

Ferric Carboxymaltose (rINN) fe·ric car·boks·ë·mal·tös
Poly[α-glucopyranosyl(1→4)]-α-gluconic acid complex of hydrated iron(III) oxide; 9007-72-1;
Treatment of iron-deficiency anaemia

Fosaprepitant (rINN) fos·á·pre·pi·tant
(3-({[(2R,3S)-2-[(1R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)morpholin-4-yl]methyl}-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)phosphonic acid; C_{23}H_{22}F_{7}N_{4}O_{6}P; 172673-20-0;
Fosaprepitant Dimeglumide 265121-04-8
Neurokinin-1 (NK₁) receptor antagonist; prevention of nausea and vomiting associated with emetogenic chemotherapy

Iron Sucrose (BAN) îr·on sük·rōs
A complex of iron(III) hydroxide with sucrose containing traces of sodium chloride and sodium hydroxide corresponding approximately to the formula: [(Na_{0.46}FeO_{1.6}(OH)_{0.26}(H_{2}O)_{0.54})_{n}] + 0.18NaOH + 0.02NaCl] (n = 43) (mol. wt., 43,200 approx); iron(III) hydroxide–sucrose complex; saccharated iron oxide; 8047-67-4
Treatment of iron-deficiency anaemia

Pemotrexed (rINN) pe·me·treks·ed
N-4-[2-(2-Amino-4,7-dihydro-4-oxo-1H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-1-glutamic acid; C_{20}H_{21}N_{5}O_{6}; 137281-23-3
• Pemotrexed Disodium 150399-23-8
Thymidylate synthetase inhibitor; cytostatic

Pentosan Polysulfate Sodium (rINN) pen·tō·san po·lë·sul·fät
A mixture of linear polymers of (1→4)-β-D-xylopyranose usually sulfated at the 2- and 3- positions and occasionally (approximately 1 in every 10 residues) substituted at the 2- position with a (4-O-methyl-2,3-di-O-sulfonato-β-D-glucopyranosyluronic acid) group; the average molecular weight lies between 4000 and 6000 with a total molecular weight range of 1000 to 40000; 140207-93-8
Heparinoid fibrinolytic

Pioglitazone (rINN) pi·ö·gli·ta·zön
rac-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]phenyl}methyl)-1,3-thiazolidine-2,4-dione; C_{19}H_{20}N_{2}O_{3}S; 111025-46-8
• Pioglitazone Hydrochloride 112529-15-4
Peroxisome proliferator-activated receptor (PPAR)-gamma agonist; treatment of diabetes mellitus

The symbol ‘−’ in systematic chemical names signifies line continuation.
• **Rivastigmine** (rINN) *ri·va·stig·mēn*
 3-[(1S)-1-(Dimethylamino)ethyl]phenyl ethyl(methyl)carbamate; C_{14}H_{22}N_{2}O_{2}; 123441-03-2
• **Rivastigmine Hydrogen Tartrate** 129101-54-8
 Cholinesterase inhibitor; treatment of dementia in Alzheimer’s disease and Parkinson’s disease

\[\text{Structure diagram of Rivastigmine} \]

• **Tramadol** (rINN) *tra·ma·dol*
 (±)-cis-2-Dimethylaminomethyl-1-(3-methoxyphenyl)cyclohexanol; C_{16}H_{25}NO_{2}; 27203-92-5
• **Tramadol Hydrochloride** 36282-47-0
 µ-Opioid receptor (OP, MOR) agonist and noradrenaline reuptake inhibitor; analgesic

\[\text{Structure diagram of Tramadol} \]
Cumulative List

Full details of names that have been issued since publication of *British Approved Names 2012* can be found by reference to the Supplement indicated by the number in parentheses following each name.

<table>
<thead>
<tr>
<th>Name</th>
<th>Supplement 1</th>
<th>Supplement 2</th>
<th>Supplement 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apixaban</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azilsartan</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boceprevir</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabazitaxel</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clevidipine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crizotinib</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferumoxytol</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubiprostone</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oteracil</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perampanel</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupatadine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapentadol</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telavancin</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avibactam</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azilsartan Medoxomil</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brentuximab Vedotin</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catridecagog</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dapoxetine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eribulin</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fidaxomicin</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivenafaxifor</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridianide</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paliperidone</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirfenidone</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruxolitinib</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technetium Mertiatide</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluridine</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vemurafenib</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>